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Abstract. We apply the tools of network analysis to study the roles of univer-
sity organizations and affiliations in structuring the social networks of students by
examining the graphs of Facebook “friendships” at five American universities at a
single point in time. In particular, we investigate each single-institution network’s
community structure, which we obtain by partitioning the graphs using an eigenvec-
tor method. We employ both graphical and quantitative tools, including pair-counting
methods that we interpret through statistical analysis and permutation tests, to mea-
sure the correlations between the network communities and a set of self-identified user
characteristics (residence, class year, major, and high school). We additionally inves-
tigate single-gender subsets of the university networks and also examine the impact
of incomplete demographic information in the data. Our study across five universi-
ties allows one to make comparative observations about the online social lives at the
different institutions, which can in turn be used to infer differences in offline lives.
It also illustrates how to examine different instances of social networks constructed
in similar environments, while emphasizing the array of social forces that combine to
form simplified “communities” obtainable by the consideration of the friendship links.
In an appendiz, we review the basic properties and statistics of the employed pair-
counting similarity coefficients and recall, in simplified notation, a useful analytical
formula for the z-score of the Rand coefficient.

1. Introduction. Social networks are a pervasive part of everyday life. Al-
though they have long been studied by social scientists [101], the mainstream aware-
ness of their ubiquity has arisen only recently, in part because of the rise of social
networking sites (SNSs) on the World Wide Web. Since their introduction, SNSs such
as Friendster, MySpace, Facebook, Orkut, LinkedIn, and hundreds of others have at-
tracted millions of users, many of whom have integrated SNSs into their daily lives
to communicate with friends, send e-mails, solicit opinions or votes, organize events,
spread ideas, find jobs, and more [9]. As recent work has demonstrated, the implica-
tions and importance of online social networks are diverse and signicant [60], in part
because of their role as a reflection of offline society [9,30,34,35,43,79]. Meanwhile, the
scientic study of real-world networks, including the study of SNSs, has expanded in
recent years, and there is strong optimism that formal statistical and graph-theoretic
analysis can not only help achieve a better understanding of the structure and dy-
namics of online social networks but also inform useful additions, modications, and
uses of such services.

The plethora of available activities in SNSs underscores the fact that online social
networks include multiple types of interacting informational and social structures:
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Who is “friends” with whom? Who has e-mailed whom? Who are members of the
same organizations or other groups? Who is attending which events? The interaction
between social and other types of connections is of utmost importance, with people
benefitting from their connections and role in the social network every day (see, e.g.,
[14,15]) and advertisers obviously keen to utilize the information inherent in such
networks. Accordingly, one of the goals of the study of online social networks is to
better understand their structures and dynamics in order to be able to exploit them
in a systematic manner. One of the especially exciting aspects of massive SNSs is
that they not only give researchers the chance to test theories of regularity in social
behavior at unprecedented levels of extent and detail, but that they also offer the
opportunity to develop applications that use the knowledge of numerous people from
one’s social network to provide important services (such as effective recommendation
systems [105]).

1.1. Network Science. Networks (graphs) provide a powerful representation
for analyzing complex systems of interacting agents, such as the users of SNSs. Ac-
cordingly, the study of networks has now become pervasive in biology, information
science, sociology, and many other disciplines [70,95]. The simplest type of net-
work is an unweighted, undirected, unipartite graph, which consists of a collection of
nodes (representing agents) connected by edges (representing ties/connections). Im-
portant generalizations include the consideration of different types of edges—which
can, e.g., be weighted, directed, or signed (with agents disposed towards or against
other agents)—and the study of bipartite networks, in which one type of node (e.g., an
individual) must be connected to a second type of node (such as an attended event).

The scientific study of networks has its origin in the social sciences, with edges
typically defining a specific relation between two individuals or organizations, which
can be embedded in numerous types of social networks whose structure plays an
important role in explaining their behavior [70,101,103]. Such relations can be char-
acterized by the existence of friendship, support, kinship, contact, communication,
presence at a common event, or membership in a common organization. Studies of
interorganizational networks have yielded insights into how alliances and other ties
are formed, how they affect organizational performance, and how various organiza-
tional practices spread in such networks [14,15,22,42,87,99]. Although the study
of networks has a long history, their study intensified in the late 1990s because of
interest in the Internet and an increase in readily-available, large-scale data. This
motivated the further development of tools for studying social, biological, and tech-
nological networks [3,24,70,95,103]. Such research has generated numerous impor-
tant insights on the effects of network topology on individuals’ behavior, including
collaborations [41,69], community formation [21, 28], and hierarchical and modular
organization [88,92].

1.2. Social Networking Site Research. Facebook, an SNS launched in Febru-
ary 2004, has overwhelmed numerous aspects of everyday life [8,9], becoming an es-
pecially popular obsession among college and high school students (and, increasingly,
among others members of society). Facebook members can create self-descriptive
profiles that include links to the profiles of their “friends,” who may or may not be
offline friends. Facebook requires that anybody one wants to add as a friend confirms
the relationship, so the friendship network is undirected. Recent sociological research
has shown that most people typically draw their Facebook friends from their real-life
social networks [9], implying that a Facebook network can be used as an approximate
proxy for an offline social network. Accordingly, important features of SNSs include
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the ability of users to articulate and make visible their social networks, and to inter-
act with their networks in automatic ways, such as through “news feed” broadcast
mechanisms that would be difficult to replicate offline.

The emergence of SNSs such as Facebook and MySpace has revolutionized the
availability of social and demographic data, which has in turn impacted the study
of social networks [9,52,60]. Traditionally, social network data has been gathered
using surveys, which typically limits the sizes of the graphs one could consider, biases
the types of people captured in the network, and introduces numerous sources of
data error. Now, however, one can easily acquire very large and accurate data sets
from SNSs, though of course the population online and actively using SNSs remains a
biased sample of the broader population (e.g., individuals have different propensities
to interact online). Services like Facebook also allow one to obtain better demographic
data, as many users now give out voluminous amounts of personal detail voluntarily.
This newfound wealth of available information also raises questions about balancing
the desire to proclaim identify with public disclosure of that information [96-98], and
one might also reasonably wonder if such exhibitionism has any measurable effects on
network structure or collective behavior.

Social scientists, information scientists, and physical scientists have all been quick
to jump on the data bandwagon that has resulted from this demographic revolution
[91]. Tt would be impossible for us to exhaustively cite all of the germane research, so
we only highlight a few results here; additional references can be found in the review
by Boyd and Ellison on SNS history and research [9]. Boyd also wrote a popular
essay about her empirical study of Facebook and MySpace, concluding that Facebook
tends to appeal to a more elite and educated cross-section than does MySpace [7].
Very recently, the company RapLeaf has compiled global demographics on the age
and gender usage of numerous SNSs (including Facebook) [93]. Other recent studies
have investigated the manifestation on SNSs of race and ethnicity [34], religion [79],
gender [35,43], and national identity [30]. Preliminary research has also suggested
that online friendship networks can be exploited to improve shopper recommendation
systems on websites such as Amazon [109].

A number of papers have attempted to better understand how SNS friendships
form. For example, Kumar et al. [54] examined preferential attachment models of SNS
growth, concluding that it is important to consider different classes of users (including
passive members, inviters, and linkers). Lampe et al. [55] explored the relationship
between profile elements and number of Facebook friends, and other scholars have
examined the importance of geography [59] and online message activity [37] to online
friendship formation. Several other papers have established strong correlations be-
tween network participation and website activity, including the motivation of people
to join particular groups [5], the recommendations of online groups [94], online mes-
sages and friendship formation [37], interaction activity versus sense of belonging [18],
and the role of explicit ideological relationship designations (on Essembly) in affecting
voting behavior [13,44]. An especially intriguing recent paper uses Facebook data for
an entire class of freshmen at an unnamed, private American university to provide a
quantitative study of social networks and cultural preferences [58]. The same data
set has also been used to examine user privacy settings on Facebook [57].

1.3. Community Structure in Networks. The global organization of real-
world networks typically includes coexisting modular (horizontal) and hierarchical
(vertical) organizational structures [21,28]. Mpyriad papers in the recent network
science literature have attempted to interpret such organization through the compu-
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tation of structural modules or communities, defined in terms of mesoscopic groups
of nodes with more internal connections (between nodes in the group) than external
connections (between nodes in the group and nodes in other groups) [21,28]. Such
communities, which are not typically identified in advance, are often considered to be
not merely structural modules but are also expected to have functional importance in
network dynamics. For example, communities in social networks (“cohesive groups”
in the sociology literature [66,67]) might correspond to circles of friends or business
associates, communities in the World Wide Web might encompass pages on closely-
related topics, and some communities in biological networks have been shown to be
related to functional modules [40].

With such motivation, the identification and investigation of community struc-
ture has become its own cottage industry in network science since the 2002 paper of
Girvan and Newman [36] made seminal contributions and helped turn questions about
community structure into a playground for statistical physicists and mathematicians.
The number of methods since published to detect communities in various types of net-
works is now both enormous and continuously expanding [28]. The classes of available
techniques broadly include hierarchical clustering methods such as single linkage clus-
tering [49], betweenness-based methods [36,72], local methods [6,19,56], maximization
of quality functions such as modularity and similar quantities [71,74-76,89], spectral
partitioning [73], likelihood-based methods [20], and more. In addition to remarkable
successes on benchmark examples, such as the infamous Zachary Karate Club [106],
community structure investigations have led to success stories in diverse application
areas—including the reconstruction of college football conferences [36] and the in-
vestigation of such structures in algorithmic rankings [16]; the analysis of committee
assignments [82-84], legislation cosponsorship [108], and voting blocs [104] in the
U.S. Congress; the examination of motifs and other functional groups in genetic [65]
and metabolic [40] networks; and the study of ethnic preferences in school friendship
networks [38] and social structures in mobile-phone conversation networks [80].

1.4. Overview of the Facebook Data and the Present Analysis. In this
paper, we investigate the community structure of single-institution Facebook networks
representing the full set of user pages (nodes) from each of five American universities
and all of the links between those pages, representing reciprocated “friendship,” as
they existed in June 2005. We specifically consider only ties between students at the
same institution, yielding five separate realizations of university social networks and
allowing us to comparatively examine the structures at different institutions. Our
study includes a small technical institute, a pair of private universities, and a pair of
large state universities. The data includes limited demographic information provided
by users on their individual pages—including gender and data fields that represent
(by anonymous numerical identifiers) high school, class year, major, and dormitory
residence/ “House” (depending on the specific housing mechanism of the institution).
This allows us to make interesting comparisons between different universities, under
the assumption (per the discussion in [9]) that the communities and other elements of
structural organization in Facebook networks are a reflection of the social communities
and organization of the offline networks on which they’re based. By examining these
different social networks constructed in similar environments, we can also explore the
varied and complicated dependencies of community formation on the individual at-
tributes and local cultural details. This complicated, real-world situation contrasts
with graphs in which community formation depends completely on structural prop-
erties, such as link topology and weights, as often needs to be assumed [21,28].
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Starting from the Facebook data, we focus our attention in Section 2 on the no-
tion of community detection using a simple, well-studied benchmark example (the
Zachary Karate Club) to illustrate these ideas, briefly discuss the wealth of meth-
ods available in the literature, and present the eigenvector algorithm developed by
Newman that we utilize in the present paper to obtain the community structures in
the networks of each university. We then proceed to compare these algorithmically-
identified communities with the demographic data of the users in each community,
using graphical tools in Section 3 to investigate the correlation between the communi-
ties and demographic information at Caltech (the smallest of the five institutions we
study) and the University of North Carolina at Chapel Hill. In Section 4, we use the
Karate Club benchmark example to discuss various quantitative means to compare
network partitions, focusing on the use of z-scores of pair-counting indices. Because
these z-scores depend only very weakly on the specific pair-counting coefficient em-
ployed and are indeed identical for many of the standard pair-counting indices (as
we show in the Appendix), they provide a simpler interpretation of the strengths of
the observed correlations than the raw pair-counting values, allowing correlations to
be compared more readily. We subsequently apply these methods in Section 5 to
compare the algorithmically-identified communities with the user characteristics in
the Facebook networks. For each of our five university data sets, we consider the full
network and both the male and female subnetworks. In Section 6, we study the role
of unreported demographic data on our results using two different protocols for ad-
dressing this missing information. We conclude in Section 7 with a discussion of how
our findings might inform us about the social networks of these universities. We also
consider the present paper in the context of research on network community structure.
In the Appendix, we review essential properties of the employed pair-counting simi-
larity coefficients, identify their common statistical elements, and recall (in simplified
notation) a useful analytical formula for the z-score of the Rand coefficient. The pri-
mary contributions of the present work thereby include the novel investigation of the
correlations between the community structures and personal characteristics for such
collegiate SNSs, the quantitative measurement of such correlations in terms of clearly
elaborated statistical properties, and the conclusions obtained regarding the different
strengths of community and organizational correlations at different universities.

2. Preliminaries: Community Detection in Networks. A social network
with a single type of connection between nodes can be represented as an adjacency
matrix A with elements A;; that give the weight of the tie between nodes ¢ and
j. The Facebook networks we study are unweighted, with A;; taking the values
1 and 0, indicating the presence and absence of a connection, respectively. The
resulting tangle of links, which we show for the Caltech Facebook network in Fig. 2.1,
often obfuscates the presence of organizational structure in the network. Our goal in
this section is to discuss how to identify groups of friends in the form of structural
network “communities”—groups of nodes with more internal connections between
nodes in the group than external connections between nodes of the group and nodes in
other groups [21,28]—so that we can later compare the composition of the identified
communities to groups formed from common user characteristics. Because of its
relatively small size, we will use Caltech as our first illustrative example in Section
3 to help motivate the general problem of how to compare algorithmically-obtained
network communities.

One of the earliest ideas for clustering nodes in a graph to find communities and
hierarchies is known as single linkage clustering [49]. Another classical approach can
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Fia. 2.1. [Color] (Left) A Fruchterman-Reingold visualization [33] of the largest connected
component of the Caltech Facebook network. Node shapes and colors indicate House affiliation,
with gray dots denoting individuals who did not identify a House affiliation. The edges are colored
using random shades of gray for visualization purposes. (Right) Magnification of a portion of the
network. Observe the clusters of nodes with the same color/shape, suggesting that House affiliation
has a significant effect on the existence of friendships (edges) in this graph.

be found in the graph partitioning literature in computer science [26,85], although the
traditional methods there typically require one to specify the sizes of communities in
advance, and are thus problematic for studying social networks [73]. More recently,
community detection has become one of the most prominent ideas investigated in
the network science community, where statistical physicists, computer scientists, and
applied mathematicians have all made fundamental contributions.

The earliest algorithms employed by statistical physicists used the ideas of be-
tweenness to iteratively pick out and remove high-traffic edges (or other network com-
ponents) that lie on a large number of paths between vertices. The repeated applica-
tion of such a procedure eventually fragments a network into components [36,70,75,76].
Such methods are thus examples of ‘divisive’ algorithms because they start from the
full network and divide it into smaller subnetworks. On the other hand, ‘agglomera-
tive’ algorithms such as single linkage clustering start with individual nodes and form
communities by joining them. Either way, the order in which an algorithm either joins
or splits groups can be subsequently visualized using a dendrogram (tree), though the
specific details of such dendrograms can sometimes indicate more about the details of
the employed algorithm than those of the underlying network structure [28].

One of the presently dominant approaches in community detection involves the
optimization of a quality function known as modularity, which counts the total edge
weight of all intra-community connections compared to that which might be ex-
pected at random (under some null model) [27,71,73,74,76], though there are also
numerous other popular approaches to determining network community structure
[6,19,20,28,56,81,89]. In the context of the big-picture goal of finding functional or
cohesive groups in networks, all of these techniques implicitly make strong assump-
tions about the relation between structural and functional properties of the network.
That is, given the available data and methods, many researchers (ourselves included)
are typically forced to limit attention to the available information about the links in
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deriving structures, with little assurance that the behaviors of and on the network
are best represented by this limited information. Moreover, one often assumes that
there is a single “best” clustering or level of organization, and that such a preferred
clustering is actually meaningful. The questionable nature of this last point was dis-
cussed recently in [2]. The comparative investigation of communities (after they have
been obtained algorithmically) that we conduct in the present paper provides some in-
sight into the other assumptions. Moving beyond these assumptions is a very difficult
problem that deserves serious attention.

A high modularity value indicates a strong or significant structural split in the
network and has been found to be a good indicator of functional network divisions
in many cases [73,74], though again we stress that structural modules might provide
only an approximation of the associated functional modules. Modularity, computed
for selected partitions of the network, thereby measures the extent to which the identi-
fied interactions between nodes take place within the identified community partitions
rather than across them. An appealing feature (shown very recently) of detecting
communities by maximizing modularity is that determining a network’s community
structure in this way is equivalent to visualizing it using particular parameter values
in a force-directed layout [78].

While identifying the partitioning of a network into communities that maximize
modularity is known to be NP-complete [10], approximate optima can be found us-
ing eigenvector methods [73,74]. These methods have the additional benefit of be-
ing computationally efficient for large, sparse networks such as those we study in
our Facebook examples (which can have up to several tens of thousands of nodes
in a single-institution network), so that relatively rapid computations yield network
partitions with high modularities. We have accordingly chosen to utilize Newman’s
leading-eigenvector method in the present work; our investigation can be repeated
for any desired community-detection method. In Section 5.3, we briefly examine the
effects of algorithm choice by doing an example comparison using the results of the
eigenvector method both with and without Kernighan-Lin-Newman (KLN) iterations.
We have also checked some of the qualitative results using recursive bisection with
leading pairs of eigenvectors (also described in [73]), though we do not discuss these
computations here.

To provide context for our investigation, we find it useful to summarize the main
idea in the original formulation of the eigenvector method for community detection,
following the presentation of [73], where this spectral method was detailed. Specifi-
cally, we consider the method based on taking the eigenvector corresponding to the
largest positive eigenvalue (the so-called “leading eigenvector”) of the modularity ma-
trix B, whose components are given in terms of the adjacency matrix A by [73,74]

kik;

Big =4 =55

, (2.1)
where k; = Zj A;; is the degree of the ith node and m = %ZZ k; is the number
(or total weight) of edges in the network. Subtracting the fraction of expected edges
in (2.1) corresponds to a specific choice of null model, suggested by Newman and
Girvan [73,75], with average degree equal to that of the corresponding configuration
model [77] (a random graph with an arbitrary, specified degree distribution). More
generally, the choice of null model specifies the baseline for counting the number of
intra-community edges beyond that expected “at random.” The components of the
leading eigenvector v of B are used to bisect the network according to the sign of
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its components. Subsequent bisections are obtained recursively, keeping track of the
fact that each subnetwork one considers is actually part of a larger network, until the
modularity can no longer be maximized with further subdivisions [73,74].

Fia. 2.2. (Left) A visualization of the Zachary Karate Club network [106], using a Kamada-
Kawai spring-embedding algorithm [50], in which nodes are solid or open depending on their later
club affiliation (after a disagreement prompted the breakup of the organization) and have been ran-
domly assigned a shape (circle or diamond). The dashed lines indicate the boundaries between the
communities determined using the leading-eigenvector method with the KLN iterations of [13]. We
use the random assignment of nodes in Section 4 to discuss the quantitative comparison of partitions.
(Right) Dendrogram of the Zachary Karate Club network to group nodes into the same communities
as in the left panel (with the shadings and shapes of the nodes also the same). Note that the initial
bisection into two groups is identical to the observed split of the club.

Perhaps the most famous benchmark example used to illustrate community-
detection algorithms is the Zachary Karate Club, in which an internal dispute led
to the schism of a karate club into two smaller clubs [106]. Figure 2.2 (Left) depicts
the connections between members in the original club. The Karate Club network pro-
vides an instructive example for community-finding algorithms because we expect any
calculated communities to be very similar to the memberships of the two post-dispute
clubs, indicated by the open and closed symbols in the figure. In Fig. 2.2 (Right),
we show the communities that result from applying the leading-eigenvector approach.
The initial bisection into two branches identified by the algorithm is observed starting
from the center of the ring in Fig. 2.2 and moving outward (i.e., we show a dendro-
gram drawn in polar coordinates). The success of the algorithm is apparent, as the
initial bisection reflects the actual membership of the new clubs. This particular al-
gorithm subsequently splits the network into 4 communities, as indicated near the
outside of the ring in Fig. 2.2, the identification of which has been improved using
KLN iterations, described and recommended in [73,74]. The partition indicated in
the figure has a slightly higher modularity (Q = 0.4198) than that obtained using the
leading-eigenvector method in isolation (with @ = 0.3934), the latter differing from
the former (in the figure) by assignment of nodes #1 and #12 to the community that
includes nodes #5—7. In particular, both partitions give the same initial bisection into
the two post-dispute clubs, though such correspondence need not occur in general.
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3. Comparing Communities Visually. We now demonstrate some of the ad-
vantages and limitations of visually comparing communities to demographic infor-
mation, focusing on two of our five Facebook networks: Caltech and UNC. As the
smallest network in our data set, and which two of the present authors attended as
students, Caltech provides an illustrative example that we also know very well from
personal experience. The undergraduate “House” system at Caltech, appearing in
lieu of dormitory residence in our data, is modeled after the Oxbridge college system.
Caltech’s Housing system impacts student life enormously, both socially and academ-
ically [61], and is even used by the university as one of its primary selling points in
attracting new undergraduates. At the beginning of their first year at Caltech, un-
dergraduate students choose one of the eight Houses and usually remain a member
of it throughout their collegiate career. At the time of our data set (June 2005),
students could only select seven of these Houses: Blacker, Dabney, Fleming, Lloyd,
Page, Ricketts, and Ruddock. The residents of the eighth House (Avery) included
graduate students, faculty, postdocs, and undergraduate students affiliated with each
of the other seven Houses.

Accordingly, we have assigned to each node in the visualization of the Caltech
network in Fig. 2.1 a shape (and color) that designates undergraduate “House,” with
small dots denoting individuals who did not identify a House affiliation. The full
Caltech Facebook network at the time of our data included 1099 users; the largest
connected component included 762 nodes and 16651 edges, giving a mean degree of
21.66. Most of the other users were singletons without any specified links. We show
these statistics for all five of the Facebook networks we study in Table 5.1.

From visual inspection of Fig. 2.1, it should not be surprising that Caltech’s
community structure is strongly correlated with the House structure. We illustrate
this in Fig. 3.1 using a pie-chart dendrogram of Caltech, grouping nodes into the
communities at the maximum modularity found using the leading-eigenvector method.
(One can make a similar plot with other divisive community-detection methods.) To
obtain this partition, with 7 communities (pies) and modularity @ = 0.3594, we
recursively bisected the Caltech network down to the highest modularity that the
algorithm could obtain (i.e., when subsequent bisections reduced the modularity).
The area of each pie in the figure is proportional to the number of nodes in the
community it represents, and each color-coded pie slice (with size proportional to
the number of nodes) indicates the individuals of one House affiliation. White slices
signify individuals who did not identify any House affiliation. The central portion of
Fig. 3.1 indicates the divisive bisections made by the leading-eigenvector algorithm,
and the order of these splits is represented by the radius of their associated arcs
(moving outward from the center).

Unlike other universities (see the discussion in Section 5), we find that House
affiliation is the Caltech network’s primary organizing principle, which is what we
expected. This provides a reality check for the community-detection methods we em-
ploy, as Caltech’s House structure is so dominant socially that the partition produced
by any reasonable community-detection method should exhibit a strong correlation
with House affiliation. Indeed, each pie in Fig. 3.1 is dominated by members of one
House. Blacker, Fleming, Lloyd, Page, Ricketts, and Ruddock each dominate one
of the larger communites. There is only one House that the obtained community
structure does not similary respect: Dabney House does not have its own community
(aside from a very tiny one) but rather has a significant presence in the communities
dominated by Ricketts and (to a lesser extent) Lloyd and Blacker. Dabney, Rick-
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F1c. 3.1. [Color] Pie-chart dendrogram of the Caltech network, colored according to House affil-
tation (the analog of dormitory residence). To produce this plot, we recursively bisected the Caltech
Facebook metwork using the leading-eigenvector method until modularity could not be increased by
subsequent divisions. FEach of the communities in the final partition is represented by a pie whose
area is proportional to the number of nodes it encompasses. The central (small radius) portion of
the dendrogram shows the partitions that have been made, with smaller-radius partitions occurring
at earlier stages in the algorithm. White portions correspond to people who didn’t identify a House
affiliation. As one can see in this figure—and unlike the other universities (see the discussion in
the text)—the Caltech friendship network is organized predominantly by House.

etts, Fleming, and Blacker are geographically proximate, constituting Caltech’s four
“South Houses,” with Dabney, Ricketts, and Blacker known to be especially closely
associated socially with each other. As expected based on its different residency rules,
almost all of the pies include a number of people who identify Avery as their affilia-
tion. Members of all of the Houses live in Avery, so the wide dispersal of Avery nodes
in most of the network’s main communities—rather than its domination of its own
pie—was also expected.

To give more examples, consider the three “North Houses” (Lloyd, Page, and
Ruddock).! There are a significant number of Page residents in the Ruddock com-
munity as well as in the community that contains almost every student affiliated with
Fleming. Page and Fleming have both long been known at Caltech for being partic-
ularly popular House choices among students interested in athletics, so we conjecture
that many of these connections have arisen through this particular common interest.
(The fact that Fleming seems to be more closely associated with Page House than its
fellow South Houses is accordingly not surprising, as Fleming has long been culturally
rather different than the other South Houses.) One very interesting observation is the
geographical isolation that seems to exist in the Caltech communities even though
its campus is extremely small. In fact, this isolation is a known feature to Caltech

1 Avery, located at the north edge of campus, is geographically isolated from all the other Houses.
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students and alumni, who frequently discuss the apparent social divisions between
individual Houses, between the North and South Houses, and between Avery and all
of the other Houses (see, e.g., [1]). It is natural to wonder if community detection on
current data would find a community dominated by Avery, since its promotion to of-
ficial House status. Examining the formation of such a community using longitudinal
data would be even more interesting, but is beyond the scope of the present study.
In principle, one can also make limited predictions about the possible House af-
filiations of the white nodes (who did not identify any such affiliations) based on the
composition of the communities in which they are placed. At minimum, one can
conclude that there is a good chance that they would be interested in, e.g., alumni
events organized around the dominant House of that community whether or not they
were officially affiliated with that House. As we discuss later, the organization of the
Caltech Facebook network by House differs completely from that in other universities.
Accordingly, the present study is useful for making comparative observations between
different universities, which constitute individual “instances” of social networks con-
structed in different environments, under the assumption that the communities and
structural organization in Facebook networks is a reflection of that in their corre-
sponding real-life networks. Our outside knowledge of Caltech allows us to provide
strong qualitative support for the validity of our computational analysis, providing an
important reality check for the methods. Meanwhile, the observed heterogeneity in
the communities, even at an institution like Caltech whose social structure seems to
be mostly dominated by a single feature (House affiliation), underscores the important
point that networks typically have multiple levels of organization rather than a single
best one, as has also been discussed recently (in more abstract contexts) [4,20,56,89].

%
ST %

Fic. 3.2. [Color] Pie-chart dendrograms of UNC, colored by (Left) class year and (Right)
residence. White slices correspond to individuals who didn’t self-identify the relevant characteristic.

Despite the successes above, it is necessary to go beyond visual comparisons, as is
illustrated by consideration of the Facebook data for UNC (the present affiliation of
two of this paper’s authors). In Fig. 3.2, we show two different pie-chart dendrograms
of the identified communities in this network; one is colored by class year, and the
other is colored by dormitory residence. In contrast to the Caltech network, it is much
harder to make definitive conclusions from such visual information. To investigate the
social organization of UNC and most other universities, it is essential to quantitatively
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compare the detected communities with the available demographic groups.

4. Comparing Communities Quantitatively. As discussed in Section 3, a vi-
sual comparison of different network partitions can in some cases indicate significant
correlations. In other cases, however, it can be extremely difficult to make definitive
conclusions with visual tools alone. It is thus desirable to also employ quantitative
comparisons, for which a variety of approaches can be used. For instance, there is a
common desire to compare two different sets of clusters of a network [64]—whether
the comparison is between groups obtained from different community-detection al-
gorithms, between a specified clustering method and a known “correct” split [21], or
between a set of communities and a second obtained by detected communities in some
perturbation of the network’s adjacency matrix [51]. In the present application, we
desire to separately compare the algorithmically-identified communities to groupings
of the nodes according to each of the self-identified characteristics, in order to deter-
mine which demographic characteristics best correlate with the network community
structures of each university.

As explored by Meila [64] and concisely reviewed in [51], the many methods avail-
able in the partition-comparison literature can be classified roughly into three groups:
(1) pair counting, (2) cluster matching, and (3) information-theoretic methods. The
last category includes “variation of information” [64] and “normalized mutual infor-
mation” [21]. One can also employ statistical analysis that uses exponential random
graph models (ERGMs) [31,62,102], although this requires one to use an underlying
model of how network links arise in the first place. We choose to focus in the present
paper on a collection of pair-counting methods, in part because of their relative sim-
plicity. That same simplicity has both strengths and weaknesses: On one hand, it
has led to a plethora of specialized definitions; on the other, most pair-counting mea-
sures suffer from a serious interpretation difficulty because of the unclear range of
good scores for a given setting. However, in the present study we make a powerful,
unifying observation that standardized rescaling of a variety of these pair-counting
scores yields quantitatively similar z-score values, providing a clearer intuition and
alleviating the need to worry about the specificity of a single pair-counting measure.
In the Appendix, we discuss (1) the algebraic form of the transformation to z-scores
for some of the pair-counting scores and (2) details of the statistical similarities to
other pair-counting indices, whose z-scores can also be obtained by permutation tests
if necessary [39]. This standardization of the pair-counting coefficients provides a very
useful clarifying interpretation that we will utilize in later sections.

4.1. Pair-Counting Methods. The essential idea in using pair-counting meth-
ods to compare two network partitions is to define a similarity coeflicient by ex-
amining the placements of all possible node pairs in the two partitions. Each pair
drawn from the n nodes of a network can be classified according to whether they
fall in same or different groups in the partitions. Specifically, we denote the counts
of the number of node pairs in each classification as wi; (in the same groups in
both partitions), wio (same in the first but different in the second), wo; (different
in the first, but the same in the second), and wgy (different in both). The sum of
these quantities is, by definition, equal to the total number M of node pairs, so that
M = w11 + wig + wo1 + woep = (g) =n(n— 1)/2.

Given two partitions of a network (e.g., one given by community detection and
another by grouping users according to a specified characteristic), one can obtain many
different pair-counting similarity coefficients using different algebraic combinations of
the wqeg counts. Throughout this paper, we use the notation S; to refer generally to
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such coefficients, where a specific choice of ¢ indicates a particular choice. The pair-
counting coefficients we employ are Rand (i = R), Jaccard (i = J), Fowlkes-Mallow
(i = FM), Minkowski (i = M), T" (i =T'), and Adjusted Rand (i = AR). See [17,48,64]
for a wider range of measures, further discussion, and additional references. We
remark that pair-counting methods comprise only a subset of a more general class of
association measures that can used for studying contingency tables. In this context,
the element n;; of such a table indicates the number of elements (nodes) in the ith
group of the first partition and the jth group of the second one [47,53,64]. See the
Appendix for an additional discussion.

We focus first on the Rand similarity coefficient, Sg = (w11 + woo)/M, one of
the earliest and simplest pair-counting methods [86]. The Rand index counts the
fraction of node pairs identified the same way by both partitions—either together in
communities in both or placed in different communities in both. It is bounded between
0 (when no pair placements are the same) and 1 (identical partitions). While the Rand
coefficient is extremely intuitive, and can be used fruitfully in many settings, even a
brief consideration can reveal its deficiencies. In particular, the Rand coefficient for
comparing two network partitions that each contain large numbers of communities
tends to be skewed closer to the value 1 simply because of the large fraction of node
pairs that are placed in different communities (i.e., woo is a large fraction of M), even
when comparing two partitions with little in common. Given this behavior, the notion
of a “good” value of the Rand index for identifying similar partitions clearly depends
on other details.

A simple proposal for trying to fix this problem with Sg is to remove the explicit
role of wog, such as in the Jaccard index, Sy = w11 /(w11 + w10+ wo1), or the Fowlkes-
Mallow similarity coefficient, Spy = wll/\/(wll + wio)(wi1 + wo1). As with the
Rand index, these coefficients are necessarily bounded between 0 and 1, and the
latter value is again obtained when comparing identical partitions. While both S;
and Spym clearly avoid the problematic effects of large wqg, their complete ignorance
of node pairs classified similarly into different communities skews the comparison
unfairly in the opposite direction. This yields unnaturally high values of Sy and Spm
when comparing network partitions with very few communities (or when one partition
consists of a single community).

We also use the Minkowski and I' similarity coefficients. The Minkowski coeffi-
cient, given by Sy = \/(wlo + wo1)/ (w10 + wi1), is notably asymmetric in its consid-
eration of the two partitions. The first of the two partitions serves as a distinguished
reference, and the Minkowski coefficient provides a measurement of the number of mis-
matches relative to the number of similarly-grouped pairs in that reference (though
we will see in the Appendix that it is again symmetric after standardization). Hence,
S values closer to 0 are considered better. The I' similarity coefficient, defined as

Muwy1 — (w11 + wio) (w11 + wor)

or = V(w11 + wig) (wi1 + wo1)(M — (w11 + wio))(M — (w11 + wor))

)

has the most complicated algebraic form of the similarity coefficients we employ. We
again refer the reader to [17,48,64] for further details and additional measures.
While each of the aforementioned similarity coefficients—Rand, Jaccard, Fowlkes-
Mallow, Minkowski, and I'—has obvious apparent strengths, most notably their defi-
nitions in relatively simple algebraic forms, no one of them is clearly better than the
others. Moreover, each of these coefficients suffers from the problem that one does
not know a priori what values constitute “good” ones. To illustrate this point, we
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SrMm Sr Sy Sm Sk SAR
“Observed” | 0.7313 | 0.6092 | 0.5348 | 0.9327 | 0.7736 | 0.5414
“Random” | 0.3867 | 0.0150 | 0.2204 | 1.4094 | 0.4831 | 0.0126
TABLE 4.1
Similarity coefficients (Fowlkes-Mallow, T, Jaccard, Minkowski, Rand, and Adjusted Rand) for
comparing the 4-community partition of the Zachary Karate Club identified algorithmically versus
the “observed” split of the club into 2 new clubs (indicated by the open/closed symbols in Fig. 2.2)
and a “random” split into 2 groups (indicated by the node shapes in the same figure).

consider their application to the (ubiquitous) Zachary Karate Club network depicted
in Fig. 2.2. In Table 4.1, we collect these similarity coeflicient values for comparing
the maximum-modularity partition (“maximum” insofar as identified in Section 2)
into 4 communities with the observed split of the club into 2 groups (indicated by
open/closed node symbols in Figure 2.2). Recall that the observed split into 2 clubs is
the same as that given by combining pairs of the algorithmically-identified communi-
ties. Beyond the trivial recognition that the partitions into 2 and 4 groups are differ-
ent, the similarity values themselves are not immediately enlightening. Accordingly,
we also calculate the similarity coefficients (also shown in Table 4.1) that compare the
same 4-community partition with a randomly-generated partition into 2 groups (indi-
cated by node shapes in the figure) that clearly disagree with the community structure.
Recalling that larger values indicate closer agreement (except for Sy, for which val-
ues closer to 0 are better), the good correlation between the algorithmically-identified
communities and the observed split becomes more evident by the comparison.

Despite this seemingly successful application using the Zachary Karate Club,
additional pitfalls remain. In particular, as we observe with the Facebook networks
(see the discussion below) and explore further in the Appendix, the various S; values
depend intimately on the size of the network and the numbers and sizes of the groups in
each partition. Therefore, it is not always clear whether the ordering of the coefficient
values allows one to ascertain the relative correlations between different partitions.
For example, given two partitions of one network that have, say, a Rand value of 0.6
between them and two partitions of a second network that have a Rand value of 0.8
between them, it is not at all guaranteed that the second pair should necessarily be
classified as closer partitions (to each other) than the first pair. Consequently, the
general problem of knowing what values indicate a good correlation remains.

More complicated attempts to alleviate the problem of identifying “good” co-
efficient values include the introduction of various “adjusted” indices that attempt
to parametrically define null models corresponding to independent partitions. The
motivation for such procedures is so that the comparisons might be reported as a
similarity relative to that which might be obtained “at random.” For instance, one
can construct adjusted indices by subtracting the expected value (under some null
model and typically conditional on maintaining the numbers and sizes of groups in
the two partitions) and subsequently rescaling the result by the difference between the
maximum allowed value and the mean value [47]. One such example index, which uses
a simple bound on the maximum allowed value, is the Adjusted Rand coefficient [47]

wi — ﬁ(wu + wio) (w11 + wo1)
3 [(w11 + wio) + (w11 + wo1)] — 77 (w11 + wio) (w11 + wor)

SAR =

We remark that constructing a sharp upper bound subject to the constraint of fixed
row and column sums in a given contingency table is known to be a very difficult
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combinatorial optimization problem. Indeed, even the question of counting how many
total ways there are to fill such a table under constrained row and column sum margins
is a difficult one [23]. Hence, it is typically necessary to employ a weaker bound such
as that used in the Adjusted Rand of [47], where the maximum value of wy; (which we
recall denotes the number of pairs placed in same groups in both partitions) is given
by the average of the number of same-group pairs for each partition individually.

As described in [64], adjusted indices can be problematic because using only the
expected and maximum values in no way guarantees the accuracy of comparisons
between similarity coefficients in different settings—for example, when comparing
different pairs of partitions, which is what we do when we compare algorithmically-
obtained communities to groupings constructed using self-identified demographics. In
this paper, we approach the problem of identifying “good” coefficient values by di-
rectly standardizing the similarity coefficients and providing a context for the obtained
results by computing coefficient z-scores (i.e., by examining for each coefficient value
its number of standard deviations away from the mean). When necessary, such z-
scores can be obtained non-parametrically using permutation tests [39]. Our decision
to standardize comparisons using z-scores is motivated by the goals of the adjusted in-
dices, our interest in demographic correlations, and our observations above including
the random partition in the Zachary Karate Club network.

4.2. Permutation Tests and z-Scores. The aforementioned quantitative meth-
ods, including the “raw” S; values of the pair-counting scores, might be appropriate
for comparing partitions that are exceptionally close to one another, as it might be
desirable in such cases to have some notion of distance between partitions. However,
as we will demonstrate using the Caltech network in Section 5.3, it is apparent that
two partitions can be very highly correlated with one another even if there are a large
number of differences in individual node assignments. Accordingly, it seems more
appropriate to report the correlation strength relative to that obtained at random,
with a scaling dictated by the width of the distribution, rather than by raw similarity
scores or their adjusted-by-maximum values. To provide a standardization of the pair-
counting coefficients, we therefore calculate z-scores, z; = (S; — p;)/0;, equal to the
number of standard deviations o; that the S;-value is better (more correlated) than
the mean p;, for each of the S; values (i € {FM,T",J, M, R, AR}). (For the Minkowski
coeflicient Sy, we also multiply by —1 to account for smaller Sy values corresponding
to higher correlations.) Positive z-scores thus indicate (positive) correlations, whereas
negative z-scores indicate anti-correlations.

In the Appendix, we recall (in simplified notation) the formulas for the mean and
variance of the Rand coefficient under the “hypergeometric distribution” of equally
likely assignments subject to maintaining the numbers and sizes of groups in each
partition. We additionally show that zr and a number of the other z;-scores are
indeed identical to each other upon standardization of their underlying S; values.
In situations for which simple formulas for the necessary moments do not appear to
be available (i.e., for the Jaccard and Minkowski indices), we resort to the compu-
tationally straightforward (albeit intensive if one desires high accuracy) method of
interpreting the calculated S; values in terms of their distributions that we obtain
using permutation tests [39], again under the same typical null model of equally-likely
node assignments conditional on the constancy of the numbers and sizes of groups.
Specifically, starting from two network partitions whose correlation we want to mea-
sure, we first calculate the similarity values S; and then obtain a context for these
values by repeatedly computing S; under random permutation of the node assign-
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ments in one of the partitions. (Performing additional random permutation in the
second partition is redundant.) We thereby aim to compare the similarity coefficients
between the two partitions to the distributions of such coefficients from the appropri-
ate ensemble of partition pairs, while automatically preserving the numbers and sizes
of groups in both partitions.

The permutation test strategy might seem problematic because the number of ran-
dom permutations becomes computationally intractable for all but the smallest net-
works. In practice, however, the moments p; and o; converge rapidly. While numerical
computation of the cumulative distribution values for specified S; (the “p-value”) in-
deed requires sampling a large fraction of the total ensemble, calculating z-scores only
requires one to sample the first two moments of the distribution. In our computations,
we typically use 10000 permutations for the Facebook networks (even for the larger
ones, where the number of nodes is actually larger than the number of permutations
considered) and observe the expected apparent convergence of the sample mean and
variance, giving z-scores typically accurate to two significant figures. Because of the
small number of samples that we consider, we do not include the S; values for the non-
permuted comparison in the calculation of the moments because this is a distinguished
value not obtained under truly random conditions. We observe that the distributions
of S; values obtained using permutation tests between algorithmically-identified com-
munities and self-identified demographic groupings appear to be roughly Gaussian,
though certainly not precisely Gaussian. For instance, the observed skewnesses (third
central moments normalized by o) and kurtoses (fourth central moments normalized
by o}) are always near 0 and 3, respectively. We stress, however, that because of
significant non-Gaussian behavior in the distribution tails, the z-scores do not yield
accurate p-values using a Gaussian assumption. Hence, while one should of course
prefer to directly examine the p-values from the cumulative distribution, one cannot
hope to calculate them without the full, computationally-unobtainable distribution.
We thus focus our discussion on the z-scores themselves.

We return to the Zachary Karate Club network to illustrate these ideas. We con-
sider a sequence of random permutations of the node assignments and calculate the
similarity coefficients in order to compare the maximum-modularity partition (4 com-
munities of 11, 5, 12, and 6 nodes) with the partition according to the observed split
into two groups (equivalent to combining the 11-node and 5-node communities into
one group and the 12-node and 6-node communities into another). After obtaining
the means and standard deviations of the similarity coefficients from these permu-
tations (see Table 4.2), which are in good agreement with the analytical formulas
(when available; see the Appendix), we calculate the z-scores to compare these two
partitions for each of the aforementioned pair-counting similarity measures. We simi-
larly run permutation tests to compare the 4-community partition with the “random”
partition (2 groups of 23 and 11 nodes), identified by circles and diamonds in Fig. 2.2.
We note, in particular, that because the group sizes in the “random” partition are
different from those in the “observed” split, the u; and o; values are also different
in Table 4.2, as is expected because the ensemble of partitions obtained by random
permutation must be different as a result of the constraint to preserve group sizes.

The z-scores in Table 4.3 reveal a remarkable simplification, as some of them
appear to be identical to each other up to the number of significant figures in the table.
Indeed, the Fowlkes-Mallows, I, Rand, and Adjusted Rand z-scores are provably
identical, as their corresponding similarity indices are linear functions of one another
(see, e.g., [48] and the discussion in the Appendix). Because of this equivalence, we
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FM r J M R AR
“Observed” o | 0.3559 | -2x107° | 0.2045 | 1.3769 | 0.5064 | 3x10~°
o | 0.0258 | 0.0419 | 0.0183 | 0.0261 | 0.0184 | 0.0371
“Random” p | 0.3780 | 8x107° | 0.2147 | 1.4180 | 0.4765 | -3x10~°
o | 0.0252 0.0437 | 0.0178 | 0.0262 | 0.0191 0.0367

TABLE 4.2
Calculated means (u) and standard deviations (o), obtained through permutation tests (108
realizations), for each of the similarity coefficients shown in Table 4.1 (Fowlkes-Mallow, ', Jaccard,
Minkowski, Rand, and Adjusted Rand) for partitions of the Zachary Karate Club network. In
particular, we compare the J-community, mazximum-modularity partition to the “observed” split of
the club into 2 new clubs (indicated by the open/closed symbols in Fig. 2.2) and a “random” split
into 2 groups (identified by the node shapes in the same figure).

2ZFM 2r 23 ZM ZR ZAR
“Observed” 14.6 14.6 18.0 17.1 14.6 14.6

“Random” | 0.343 | 0.343 | 0.322 | 0.329 | 0.343 | 0.343
TABLE 4.3

Calculated z-scores (i.e., number of standard deviations away from the mean), obtained using
permutation tests, for each of the similarity coefficients in Table 4.1 (Fowlkes-Mallow, T', Jaccard,
Minkowski, Rand, and Adjusted Rand) for partitions of the Zachary Karate Club network. In
particular, we compare the 4-community, mazrimum-modularity partition to the “observed” split of
the club into 2 new clubs (indicated by the open/closed symbols in Fig. 2.2) and a “random” split

into 2 groups (identified by the node shapes in the same figure).

henceforth restrict our attention among these metrics with identical z-scores to the
Rand coefficient z-score, which we denote by zr (to respect the seminal role of the
Rand coefficient in the pair-counting literature). We stress, however, that the linear
transformations between the .S; values include information about the number of pairs
M. that are classified in same groups in the cth partition (¢ € {1,2}). Hence, when
the numbers and sizes of groups in the partitions change, the raw similarity values S;
accordingly also change. As we demonstrate in Section 5, this implies that the values
of the similarity indices can have different orderings in different comparisons even
when their z-scores are identical, further supporting our preference to standardize
such pair-counting using z-scores.

Another interesting observation is that the other z-scores in Table 4.3 (Minkowski
and Jaccard) are also reasonably close to zr. This relative similarity in z-scores follows
from the fact, shown in the Appendix, that their p-values for a specified comparison
between two partitions are each necessarily identical to that for Rand (and its linearly-
transformed equivalents) because of the imposed constraints on the numbers and sizes
of groups in those partitions. However, the resulting z; and zy are not equivalent
to zr because the associated transformations from Sg to S; and Sy are nonlinear.
Consequently, because the p-values of a comparison are identical in each of these cases,
the variations in the derived z-scores provide an (admittedly crude) indication of the
variability in the shapes of the distributions.

In Fig. 4.1 (particularly in the left panel), one can see that the distributions
of the similarity indices are clearly not Gaussian. Their distributions are not even
known in general, except in the large-sample asymptotic limit [53]. Therefore, as
emphasized in [48], there is no known theoretical threshold for deciding when these
similarity measures indicate an unusually high correlation between two partitions.
Nevertheless, as observed for instance in the right panel of Fig. 4.1, the distributions
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Fic. 4.1. Ezample permutation distributions of the Rand coefficient obtained by comparing
(Left) the 4-community, mazimum-modularity partition identified for the Zachary Karate Club to
random permutations of the observed 2-group split of the community (see Fig. 2.2) and (Right)
the communities obtained by recursive application of the leading-eigenvector method to the largest
connected component of the Caltech data (containing 762 nodes in 7 communities) with random
permutations of the network partitioned according to identified House affiliation (9 categories, in-
cluding one for those who did not identify an affiliation). For comparison, we have also plotted
the Gaussian distributions with the same means (0.506 for the Zachary Karate Club and 0.777 for
Caltech) and standard deviations (0.0184 and 4.25 x 10™%) as the permutation distributions (which,
respectively, have skewnesses of 1.67 and 0.421 and kurtoses of 7.22 and 3.37).

of the pair-counting indices appear to become more Gaussian for even the smallest
Facebook network we consider, so the z-scores of the traditional two-sided 95% and
99% confidence intervals should not deviate significantly from their Gaussian values
of 1.96 and 2.58, respectively.

The Zachary Karate Club example, in conjunction with the discussion in the
Appendix, illustrates our assertion that it is typically more useful to adjust similarity
indices by subtracting the mean behavior and rescaling by the size of the standard
deviation than to adjust them using the maximum possible deviation from the mean—
obtaining “standardized” indices, cf. “adjusted” indices. The known equivalence for
each similarity coefficient of the (albeit unknown) p-values and the relative similarity
in the z-scores indicates that the z-scores provide more detailed information than
any of the raw or “adjusted” (by maximum) indices by themselves. Moreover, the
zgr-score can be calculated relatively easily from available formulas, such as in [46] or
(in simplified form) in the Appendix.

Of course, as we will see with the Facebook examples in Section 5, calculating
z-scores of the pair-counting indices is not a panacea, particularly when comparing
networks of different sizes. Nevertheless, we find them exceptionally useful for ex-
amining the correlations between communities and the groupings according to the
available demographics in our Facebook data. Before we concentrate on using these
z-scores to measure correlations, it is also instructive to compare our results (dis-
cussed in Section 5) versus what might have been available using other methods, such
as variation of information (VI) [64] and the (non-standardized) Adjusted Rand [47].
To do this, we show a scatter plot of zg versus various relevant quantities in Fig. 4.2.
One immediate observation is that while the Adjusted Rand Sagr values trend posi-
tively with zgr (recall that zr = zaRr), there are situations with very small Sar that
have much larger zr values than should be expected at random.

Because VI has a genuine metric structure [64], it has recently been used to ex-
amine networks whose community structure evolves gradually either in time [25] or
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Fic. 4.2. Scatter plot of zr (i.e., the z-score of the Rand coefficient) on the horizontal axis
versus (on the vertical axis) the other pair-counting z-scores (zy and 2\ ), variation of information
(VI), a z-score for VI obtained using permutation tests, and the adjusted Rand similarity index SAR .
The depicted data points are drawn from the 60 situations examined in Section 5: 5 universities
compared with each of 4 demographic groupings for each of 3 networks per university (full, women-
only, and men-only). We discuss the empirical observations in this plot at the end of Section 4.2.

with respect to some system parameter [90]. However, while VI is an excellent way
to compare two nearby partitions [64], even situations that are expected to give the
most demographically-homogeneous communities—such as our comparison in Section
3 of the algorithmically-determined Caltech communities versus the House-affiliation
groupings—give a pair of partitions with many detailed differences in individual node
assignments. Such partition pairs are consequently not very close to each other ac-
cording to a metric such as VI, yet they are obviously far more similar to each other
than should be expected at random. Accordingly, raw VI scores appear to not be
very useful here and are indeed only weakly correlated with zg in Fig. 4.2. Indeed, we
observe (not shown) that the mutual information between two such partitions is often
a very small fraction of the total information. However, one can use permutation
tests to process VI into a corresponding zyi-score, which correlate strongly with the
zr values (again see Fig. 4.2). Hence, while the raw VI values do not indicate that the
partitions are themselves close to each other in distance, the zyi-scores show that they
are nevertheless much closer than might be expected at random. Unfortunately, there
does not appear to be a clear correspondence between 2y and zg, so we maintain our
focus on the latter, in part due to the simplicity of its calculation (appealing again to
the formulas in the Appendix).

5. Facebook Communities. Armed with the lessons from Section 4 that one
can provide a better context for comparing network partitions using the z;-scores of
the different pair-counting similarity coefficients, we turn our attention to the Face-
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Institution | Caltech | Georgetown | Oklahoma | Princeton | UNC
Nodes 1099 12195 24110 8555 24780
Connected Nodes 762 9388 17420 6575 18158
Connected Edges | 16651 425619 892524 293307 | 766796
Average Degree | 21.85 45.34 51.24 44.61 42.23
# Communities 7 48 5 5 5
Modularity | 0.359 0.393 0.285 0.382 0.369
TABLE 5.1

Basic characteristics of our five Facebook networks: total number of users (nodes) in the data,
number of nodes in the largest connected component, number of edges in the largest connected com-
ponent, and average degree in the largest connected component. We additionally indicate the number
of communities and modularity obtained using the leading-eigenvector method.

book data. We algorithmically generate one set of communities for the largest con-
nected component of each institution’s network, using Newman’s leading-eigenvector
method for simplicity. We then compare those communities to the partitions obtained
by grouping users according to each of the self-identified characteristics: major, class
year, high school, and dormitory/House. We examine five universities—California
Institute of Technology (Caltech), Georgetown University, Princeton University, Uni-
versity of North Carolina at Chapel Hill (UNC), and University of Oklahoma—in
order to concisely illustrate our methodology and findings. These institutions are of
different sizes and different presumed predispositions towards organization according
to the four available characteristics. In Table 5.1, we present their total node number,
the number of nodes in their largest connected component, the number of edges in
that component, and the average degree (i.e., average number of friends per user) of
that component. In the same table, we also show the number of detected communities
and modularity of the computed community structure.

For each institution and each comparison, we calculate the z-scores of the selected
pair-counting similarity coefficients, which we obtained by generating distributions
of the same coefficients from random permutations of the node assignments. We
confirm that the obtained z-scores have reasonably converged by comparing with those
obtained using half of the generated permutations and with the analytical formulas
(A.1)-(A.3) for zr. We typically report three significant figures in each case, although
as discussed in Section 4.2 one should not expect to obtain more than two significant
figures from 10000 random permutations.

Because there are situations in which individuals elected not to disclose some
subset of the self-identifying characteristics (major, year, high school, and dorm), we
were forced to create a separate “Missing” label for each of the demographics and
group relevant users into that artificial group. In the present section, we ignore the
artificial nature of this group. Accordingly, in the pie-chart dendrograms, we have
consistently indicated such missing fields using white wedges in order to properly
convey the extent of the missing data. We will revisit this issue in Section 6.

As an example of other productive ways to study Facebook networks, we also con-
sider their single-gender subsets (i.e., subgraphs that include only same-gender nodes
and links) and again investigate the correlation between communities and character-
istics as one way of examining the similarities and differences between the “typical”
behavior of women and men in these networks. We thus identify the largest connected
components of the women-only and men-only subnetworks for each university, find
the communities of these subnetworks (using the leading-eigenvector method), and
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Institution Caltech Georgetown Oklahoma Princeton UNC
Connected Nodes 217:459 4379:3937 8164:7870 2701:3095 9616:6996
Connected Edges 2349:6266 102398:82406 | 284279:170890 | 69195:64679 | 240130:131304

Average Degree | 10.82:13.65 23.38:20.93 34.82:21.71 25.62:20.90 24.97:18.77
# Communities 4:7 6:8 11:10 5:17 5:10
Modularity | 0.321:0.376 0.448:0.355 0.349:0.393 0.399:0.379 0.336:0.296
TABLE 5.2

Basic characteristics of the largest connected components in the single-gender Facebook subnet-
works of each university (number of nodes, number of edges, and average degree in the largest con-
nected component) and of the community structure (as obtained by the leading-eigenvector method).
In each case, we give the number for the women-only network followed by that for the men-only
network.

compare them to the available user demographics.

Examining the basic characteristics of each subnetwork and its communities listed
in Table 5.2, we note that the sizes of the women-only and men-only networks do
not sum to those of the largest components of each university. That is, ignoring
cross-gender links has (unsurprisingly) reduced the total numbers of nodes in these
largest components. We also comment that there are some potentially interesting
changes in the numbers of communities listed in Table 5.2 (compare to Table 5.1), but
further analysis of these possible changes would require careful study of the identified
communities themselves (including a comparison with different community-detection
algorithms) and is thus beyond the scope of the current discussion. Instead, we focus
our attention on measuring the correlation between these communities of the single-
gender subnetworks (as obtained from the leading-eigenvector method) and the other
user demographics.

5.1. California Institute of Technology. We now revisit Caltech’s commu-
nity structure, which we previously examined by visual inspection in Section 3. In
its most basic form, the leading-eigenvector method identifies 7 communities (with
modularity @ = 0.3594), which can be seen in Fig. 3.1. As we discussed (and one
can see clearly in the figure, colored according to self-identified House affiliation), the
Caltech community structure has a strong correlation with House affiliation.

To investigate this quantitatively, we calculate the similarity coeflicients of the
7-community partition versus the four available user characteristics (presented in Ta-
ble 5.3). In so doing, we note that the raw similarity-coefficient values appear to be
insufficient to the task of comparing these communities, which is unsurprising after
the discussion of Section 4. The rank ordering of the correlation strengths of the com-
munities with the different demographics is not consistent for different pair-counting
indices—even for the ones that we already know are simple linear transformations
of one another—because the changes due to the constants in the linear transforma-
tions between S;-values and z;-scores (see below and the Appendix) mask the relative
order indicated by the z-scores (shown in Table 5.4). For instance, the raw Fowlkes-
Mallows value (SgMm) appears to order the categories House, year, major, and high
school (in descending order of correlation with the communities); whereas Rand (Sgr)
and Minkowski (Sy) order them House, high school, major, and year (recalling that
smaller Sy values indicate better agreement). Meanwhile, although they each agree
that the correlation with House is strongest, the raw S; values differ wildly in how
much they set apart the House correlation. In particular, the Sg and Sy values might
lead one to interpret that the correlation with House is only marginally stronger than
that with high school, even though Caltech is so tiny that it contains very few students
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“Major” | 0.0069 | 0.12 0.0078 | 0.0579 | 1.124 | 0.779 | 4.332

“House” | 0.2892 | 0.3989 | 0.2943 | 0.2452 | 1.0231 | 0.8169 | 2.3579

“Year” | 0.0167 | 0.1836 | 0.0168 | 0.1011 | 1.2591 | 0.7227 | 3.5089

“High School” | 0.0112 | 0.0868 | 0.0169 | 0.0314 | 1.0473 | 0.8082 | 4.7316
TABLE 5.3

Similarity coefficients (Adjusted Rand, Fowlkes-Mallow, T, Jaccard, Minkowski, and Rand) and
variation of information for comparing the 7-community partition of the Caltech data versus each
of the four self-identified user characteristics.

Full (z3,2m,2r) | Women (z3,2Mm,2R) Men (z3,2M,2R)
Caltech: “Major” 3.64, 3.63, 3.63 0.276, 0.277, 0.279 2.15, 2.15, 2.15
“House” 153, 144, 133 58.8, 55.3, 50.8 145, 134, 120
“Year” 7.63, 7.6, 7.57 6.36, 6.32, 6.26 5.96, 5.94, 5.91
“High School” 4.9, 4.89, 4.88 0.725, 0.726, 0.727 0.442, 0.443, 0.443
Georgetown: “Major” 2.71, 2.71, 2.71 5.75, 5.74, 5.73 13.9, 13.9, 13.8
“Dorm” 123, 119, 114 81.1, 78.5, 75.3 36.8, 36.3, 35.7
“Year” 717, 677, 627 494, 458, 410 294, 281, 264
“High School” 25, 24.8, 24.6 11.6, 11.6, 11.5 -0.515, -0.515, -0.515
Oklahoma: “Major” 7.5, 7.49, 7.49 12.6, 12.6, 12.6 9.23, 9.22, 9.22
“Dorm” 26.4, 26.1, 25.7 3.61, 3.61, 3.6 18.3, 18.2, 18.1
“Year” 9.41, 9.4, 9.39 33.3, 33.2, 33.1 24.5, 24.5, 24.4
“High School” 21.8, 21.7, 21.6 12.8, 12.8, 12.8 23.3, 23.2, 23.2
Princeton: “Major” 44.8, 44.1, 43.4 49.3, 48.3, 47.1 12.9, 12.8, 12.8
“Dorm” 11, 10.9, 10.9 13.3, 13.2, 13.1 33.6, 33.1, 32.6
“Year” 483, 459, 428 288, 272, 252 408, 384, 353
“High School” | -4.41, -4.42, -4.43 | -1.68, -1.68, -1.68 7.44, 742, 7.41
UNC: “Major” 23, 22.9, 22.9 8.32, 8.31, 8.3 5.95, 5.94, 5.93
“Dorm” 128, 125, 122 -3.97, -3.98, -3.99 3.59, 3.58, 3.57
“Year” 628, 612, 593 93.4, 92.4, 91.1 85.5, 84.4, 83.1
“High School” 17,17, 16.9 6.15, 6.15, 6.15 3.51, 3.51, 3.5
TABLE 5.4

Permutation-test-obtained z-scores of the pair-counting similarity indices for comparing the
algorithmically-identified communities of Facebook networks for each university versus self-identified
user characteristics. The “Full” network includes all users in the largest connected component of the
institution (see the statistics in Table 5.1). We also consider single-gender subgraphs, in which the
networks labeled “Women” and “Men” only include links between individuals of the same gender.
We include each of the three different pair-counting z-scores, despite the minor nature of their
quantitative differences. (Recall that zar = zrM = 2r = 2R; see the discussion in the Appendiz.)
Large z-scores, particularly relative to others in the same data set, indicate significant organizational
demographics.

at one time that come from the same high school.

These apparent disagreements across the S; values occur even though we know
that their corresponding p-values in the (unobtained) random distributions are iden-
tical. While we cannot directly calculate those p-values, we can obtain the z-scores
for each. These z-scores (see Table 5.4) differ slightly quantitatively while main-
taining a consistent interpretation of the roles of the four characteristics at Caltech:
House is most important, followed distantly by year, high school, and major (again,
in descending order of correlation with the communities).

To further emphasize the insufficiency of the raw similarity-coefficient values by
themselves (again see Table 5.3), we highlight that only the Adjusted Rand coefficient
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achieves the same ordering for the correlation of the communities with the four char-
acteristics as the consistent z-score interpretation in Table 5.4. However, there is no
guarantee for even this agreement. Indeed, we have observed examples in which the
z-scores for comparing two different pairs of partitions are ordered differently from
their Sar values. Such disagreements result from the manners in which the numbers
and sizes of groups in the different characteristic partitions impact the values of the
coefficients. That is, while they are each functions of the number (w11) of pairs com-
mon to both partitions , those functions include factors based on the total number of
pairs (M) as well as the number of pairs (M;) appearing in the same group in the jth
individual partition (j € {1,2}). Given such dependence, coupled with the different
sizes of the groups in the self-identified partitions, we should no longer be surprised
by the poor performance of the raw S; values and will only consider z;-scores for the
remainder of our discussion.

Applying the leading-eigenvector method to the single-gender Caltech networks
yields 4 communities for the women and 7 for the men. Accordingly, while we again
see the unsurprising extreme importance of House affiliation, the z-scores suggest that
the effect is somewhat stronger for men than it is for women. The slightly positive
association with class years is the same for both genders. Additionally, men seem to
have a very slightly positive association by major, whereas women have essentially
none. Neither single-gender network seems to positively associate according to their
high school affiliation, which is sensible given how few people from the same high
school are present at any one time at a small university like Caltech.

5.2. Other Universities. We now briefly present our observations for the other
universities. For simplicity, we will often refer to a single z-score in our discussion,
though the same conclusions hold for each of the z-score choices in Table 5.4.

5.2.1. University of North Carolina at Chapel Hill. As we saw in Section
3, visual inspection of the correlation between the community structure and demo-
graphic groups in the UNC network is not particularly fruitful. As shown in Fig. 3.2,
the leading-eigenvector method finds 5 communities in the largest connected com-
ponent. In contrast to what we observed in the Caltech data, the z-scores applied
to the full UNC network suggest that class year is the primary organizing charac-
teristic (of the four available to us) and that dormitory residence is also prominent.
Major and high school have smaller but noticeable positive effects. Interestingly, the
single-gender networks seem to remove the effect of dorm entirely, with small negative
z-scores for women and small positive ones for men. The z-scores for major and high
school become smaller but remain positive.

We highlight the large values of the z-scores for UNC, especially as compared to
Caltech. In particular, while we strongly advocate the use of z-scores to measure the
strengths of correlations (relative to the other available quantitative alternatives), it is
nevertheless clear that such a statistical statement remains imperfect when comparing
the visually very strong House correlation at Caltech (zg = 133) versus the strength of
the year correlation at UNC (zr = 593). The simple explanation for this discrepancy
is the different sizes of the two data sets (762 nodes versus 18158 nodes), which causes
the seemingly weaker correlation in the latter to be statistically much further in the
tail of the random distribution than the former. We consider further study of this
size effect to be a potentially valuable avenue of future work.

5.2.2. University of Oklahoma. The other large state university we consider
is the University of Oklahoma, which has 5 communities in the partition obtained
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using the leading-eigenvector method. Based on the z-scores in Table 5.4, the com-
munities seem to break up primarily according to a combination of dormitory residence
and high school, with year and major as somewhat (but not appreciably) smaller de-
termining factors. Interestingly, all four z-scores have the same order of magnitude
for Oklahoma, which is very different from what we observed for the other universi-
ties. Moreover, none of these values is even close to as large as the largest for UNC,
despite the similar sizes of their respective networks. Accordingly, it is more difficult
to confidently indicate how the full communities are organized at University of Okla-
homa. Class year seems to be the most important characteristic in both single-gender
networks at Oklahoma, and dormitory residence seems to be more important to men
than it is to women.

However, a visual inspection of pie-chart dendrograms (not included here) indi-
cates that significantly fewer people at Oklahoma self-identified their dormitory res-
idence than their high school. We thus postpone further conclusions here to Section
6, in which we consider different ways of handling missing demographic data.

5.2.3. Princeton University. We show the community structure for Princeton
University (with 5 groups, obtained using the leading-eigenvector method) in Fig. 5.1
(colored by class year and by major). Note that the size of the Princeton data set
(with over 8500 nodes, including 6575 of them in the largest connected component) is
disproportionately large relative to the institution’s size; this is a result of (relatively)
early Facebook adoption at Princeton. The z-scores in Table 5.4 reveal that Princeton
students break up into communities predominantly according to class year, with a
reasonably large organization by major, a small positive organization by dormitory,
and an organization that appears to be correlated (slightly) negatively with high
school affiliation. The z-scores in the single-gender networks suggest that class year
is very important for both men and women, major is more important for women than
for men, dorm is more important for men than for women, and high school has a small
positive effect for men but a small negative one for women.

Princeton has the smallest dorm z-score among all the universities we examine.
This may be due in part to an ambiguous definition of dorm at Princeton, as different
individuals might reasonably use this field to indicate their residential college, eating
club, or current living location. It may also be an effect of missing data.

5.2.4. Georgetown University. We show the community structure for George-
town University in Fig. 5.2 (with 48 communities identified by the leading-eigenvector
method and colored by class year/dormitory). Similar to UNC, the z-scores in Ta-
ble 5.4 indicate that the communities break up primarily according to class year and
secondarily by dormitory residence. There also seems to be some importance to high
school affiliation but very little to major (which, by contrast, seems to have more
relevance at UNC). Indeed, major seems to be less important for Georgetown’s social
network than for any of the other four universities.

The z-scores of the single-gender networks indicate that year and dorm remain
the primary and secondary organizing characteristics. High school seems to have
some positive organizing effect for the communities in the network of men, whereas
essentially no effect (the z-score is slightly negative) in the network of women. The
z-score for major indicates a small positive effect for both genders.

5.3. Additional Considerations. Before continuing further, we strongly em-
phasize that any conclusions derived from the numbers in Table 5.4 should be inter-
preted with questioning caution, as one should of course be careful about how they
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Fia. 5.1. [Color] Pie-chart dendrograms of Princeton, colored by (Left) class year and (Right)
magor. (As before, white slices correspond to people who didn’t identify the relevant characteristic.)

P >
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F1G. 5.2. [Color] Pie-chart dendrograms of Georgetown, colored by (Left) class year and (Right)
dormitory residence. (As before, white slices correspond to people who didn’t identify the relevant

characteristic.) The smallest pie near the 8 o’clock position is actually a collection of 38 very small
communities that we combined in the plot for visual simplicity.

might be influenced by our chosen methodologies. For instance, one should be curi-
ous about the possible role of the missing user characteristics in the calculations of
the correlation measures. In particular, the sometimes large number of unidentified
characteristics, shown as white slices in the pie-chart dendrograms, might skew the
results through their large number. We attempt to better understand the role of this
missing data in Section 6. One should also be wary of the possible influence of the
selected definition of “community” and the method of its detection.

As an example of the effect of the community identification, we consider the pos-
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7 communities from 6 communities from
eigenvector method alone | eigenvector + KLN
Full (z3,2M,2R) Full (z3,2Mm,2R)
Caltech: “Major” 3.64, 3.63, 3.63 3.14, 3.14, 3.13
“House” 153, 144, 133 202, 187, 168
“Year” 7.63, 7.6, 7.57 3.62, 3.61, 3.60
“High School” 4.9, 4.89, 4.88 5.02, 5.01, 5.00
TABLE 5.5

Permutation-test-obtained z-scores of the pair-counting similarity indices for comparing the
6-community partition of the Caltech data, obtained by the leading-eigenvector method plus KLN
iterations, versus each of the self-identified user characteristics. For convenience, we also show the
z-scores from Table 5.4 for the 7 communities obtained by the leading-eigenvector method alone.

sible role of the specific community-identification algorithm in the results obtained on
the full Caltech network by computing its community structure in a different manner:
starting from the same leading-eigenvector method, we now post-process the result-
ing communities with KLN iterations that can be used to improve the partitioning
further [73,74]. This refined method returns 6 communities (we previously obtained
7) and a slightly higher modularity (@ = 0.3987). Over 20% of the nodes are assigned
differently by the KLN iterations, so it is certainly possible that this could affect
the correlations with the demographics. Comparing the results of Table 5.5 with the
earlier results in Table 5.4, we see that while the z-scores change slightly, the main
qualitative conclusions remain almost exactly the same. Namely, the Caltech commu-
nity structure is very heavily correlated with the House structure and is additionally
correlated, though much more weakly, with (in descending order) high school, year,
and major. Contrasting this with the results in Table 5.4, we see that the ordering of
high school and year have been reversed, with the class year z-scores now about half
as large as they were before. This comparison cautions against the over-dependence
on any of the specific quantitative values. At the same time, the qualitative agreement
between the two community-detection methods is excellent and is especially evident
in the identification of the very strong correlation with House.

We stress again that one should not attempt to interpret the exceedingly large
z-scores in Table 5.4 in terms of the p-values one would obtain with those scores in a
Gaussian distribution. We know virtually nothing about the tails of our distributions,
and there is no a priori reason to expect them to be Gaussian. We additionally caution
that we have significant amounts of missing data affecting the results in Table 5.4,
which we attempt to address in the next Section.

One should also stress the difference between causation and correlation; we have
examined correlations in this paper. As discussed in the sociological literature on
SNSs (see [9] and references therein), it is obviously very interesting and important
to attempt to discern which common characteristics have resulted from friendships
and which ones might perhaps influence the formation of friendships. It might also be
interesting to employ ERGMs using various models of link formation in addition to the
fully random one that we implicitly consider through the selected standardizations.
In terms of the individual characteristics discussed above, high school and class year
are outside an individual’s control, so one would expect those particular correlations
to also indicate how some friendships might have formed. Common residences, on the
other hand, can both encourage new friendships and arise because of them. We note,
finally, that SNS friendships provide only a surrogate for offline ones, so that one can

26



Connected | Not Missing | Not Missing | Not Missing | Not Missing | Not Missing
Users Major Dorm/House Year High School Any
Caltech 762 692 597 655 635 501
Georgetown 9388 7510 6594 8374 7562 4774
Oklahoma 17420 15779 7203 13732 14998 5510
Princeton 6575 4940 4355 5801 5214 2920
UNC 18158 15492 8989 15883 15414 6719

TABLE 6.1

Sizes of each of the data sets used in the different procedures for handling missing data.

also expect to find differences between the community structure of, e.g., Facebook
networks and the real-life networks they imperfectly represent [9].

6. Missing Demographic Data. In the previous section, we examined the cor-
relations between the algorithmically-identified communities of the Facebook networks
and the available node characteristics. Unfortunately, as noted above, because these
characteristics rely on self-identification on individuals’ Facebook pages, many nodes
are missing demographic data. For simplicity, we previously grouped such incomplete-
ness in the node demographics into separate “Missing” groups for each characteristic
and proceeded to calculate z-scores without any further attention to this problem.
However, as the large white areas (which we use to indicate the “Missing” values in
our visualizations) in some of the pies and the total size of the missing data problem
enumerated in Table 6.1 both evince, one needs to worry about the role of missing
data in our conclusions. One could approach the issue of missing data using sophisti-
cated tools such as multiple imputation, likelihood, or weighting methods [45]. For the
purposes of the present study, however, we modestly address only the aggregate size
of the effect of missing data on our measured correlations using various restrictions
of our data to users with more complete demographic information.

Because the missing user characteristics do not affect the topologies of the friend-
ship graphs, we start with the algorithmically-determined community assignments for
each individual that we obtained above for the largest connected components of the
Facebook networks. We remark that while such online networks have no missing in-
formation in the nodes and links (and hence in the community assignments), there is
of course missing sociological information resulting from the fact that online friend-
ships are not equivalent to offline ones, as the online social network constitutes an
approximate but imperfect proxy for the offline one. [9].

For each demographic characteristic, we are then faced with a contingency ta-
ble of community assignments and groupings made by the characteristic, with one of
those groups specifically identifying the missing values. In order to examine a single
user characteristic, it is natural to simply ignore the users who left that characteristic
field empty. This is equivalent to studying the same contingency table but ignoring
the column corresponding to the missing data. That is, because the underlying net-
work has not changed at all, we neither restrict information from this network nor
recompute the communities; instead, we take the identified communities and calculate
correlations with a specified characteristic using only those users who specified a value
for that characteristic. We show the zg-scores from this data processing in Table 6.2
as the “Removed Missing” results, obtained here from the analytical formulas (A.1)-
(A.3) rather than from permutation tests. For easy comparison, we also include the
original “Included Missing” results from Table 5.4 in Table 6.2 (though we have now
recomputed these numbers analytically from the formula, for comparison).
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Included Removed Removed Any
Missing Missing Missing
F A% M F \\Y% M F A% M
Caltech: “Major” 3.62 | 0.293 | 2.15 3.48 | 0.294 | 2.22 || 3.85 | -0.0625 | 0.916
“House” 133 51.4 119 195 | 56.4 132 175 48.9 122
“Year” 7.59 6.28 5.89 814 | 596 | 5.88 || 6.84 4.62 4.98
“High School” 4.91 | 0.752 | 0.431 1.72 | 2.27 | 2.51 1.1 1.57 1.45
Georgetown: “Major” 2.69 5.87 13.8 158 | 7.43 | 3.72 || 15.7 6.76 1.46
“Dorm” 113 75 35.3 172 | 99.2 27 142 84.7 28.1
“Year” 626 411 264 712 491 286 661 458 198
“High School” 24.5 11.5 | -0.522 || 12.7 | 2.39 6.5 8.29 2.08 4.45
Oklahoma: “Major” 7.56 12.6 9.22 8.45 14 12.5 || 15.8 8.5 7.32
“Dorm” 25.8 3.56 18.1 63.8 170 164 || 57.8 156 147
“Year” 9.5 33.6 24.4 3.65 | 339 | 25.1 || 12.7 12 37.7
“High School” 21.6 12.7 23 22.6 | 29.1 | 476 | 27.1 18 29.9
Princeton: “Major” 434 | 472 12.9 18.6 9.6 6.74 || 8.76 4.65 5.46
“Dorm” 10.9 13.2 32.6 54.6 | 34.2 | 49.5 || 54.9 32.5 37.9
“Year” 429 251 357 407 276 403 191 122 280
“High School” || -4.43 | -1.68 7.48 7.03 | 275 | 2.32 || 4.19 2.79 2.09
UNC: “Major” 23.2 8.3 5.9 22.2 | 3.57 | 2.17 || 23.7 2.42 2.36
“Dorm” 121 | -3.95 3.59 96.7 48 21.7 || 99.5 45.7 18.7
“Year” 592 90.8 82.1 691 100 | 87.9 || 307 37.5 30.8
“High School” 17 6.06 3.51 82.2 28 27.8 || 58.9 13.9 14.7
TABLE 6.2

Analytically-obtained zgr-scores (using the formulas in the Appendiz) for comparing the
algorithmically-identified communities of each wuniversity’s Facebook network versus the self-
identified user characteristics. In each situation (“Included Missing”, “Removed Missing”, and
“Removed Any Missing”), the first subcolumn gives the results for the full network (F), the second
gives the result for the women-only subnetwork (W), and the third gives the result for the men-
only subnetwork (M). The “Included Missing” column corresponds to the results previously shown
in Table 5.4 that treat missing data as a separate identifying group for each characteristic. (The
slight difference in numbers, which we show for comparative purposes to illustrate the formulas in
the Appendiz, arises from the fact that we obtained them from an analytical formula in this table
but from numerical computations using permutation tests in Table 5.4.) We obtain the “Removed
Missing” results for each characteristic by removing individuals who did mot disclose that specific
characteristic from the corresponding similarity-index calculation. The “Removed Any Missing”
results include only individuals who self-identified each of the four characteristics.

While the removal of missing data seems reasonable enough, such a procedure
introduces the potential problem that the total sizes of the partitions for a given
university are no longer equal (as one can see in Table 6.1). For instance, examining
the pie-chart dendrograms of the UNC data in Figure 3.2 clearly reveals that there are
significantly more missing dormitory identifications than missing year identifications.
The procedure outlined above thus includes the community assignment of a far smaller
number of users at UNC for dealing with missing dorm data than it does in the
correlation calculated after removal of the missing year data. Given the expected
trends in z-scores with system size, this difference in the data sizes should be a
concern. As such, we also consider a more aggressive procedure for handling the
missing data, labeled “Removed Any Missing” in Table 6.2, in which we remove a user
from consideration in the correlation calculation if any of their four characteristics
(major, House/dorm, year, and high school) are missing, to ensure that the sizes of
the data are the same for a given university. In so doing, however, we caution that a
significant fraction of the total available data can be removed (again see Table 6.2).
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The main results in Table 6.2 agree qualitatively with those in Section 5, when
we treated the “missing” designation as if it were any other characteristic identifier.
In particular, the previously-discussed roles of the dominant correlations are mostly
reinforced by these additional results. The dominant correlation in the Caltech com-
munity structure remains with House assignment. The Georgetown communities are
most strongly correlated with class year and are also very strongly related to dor-
mitory. While Oklahoma’s correlations are also similar to those reported previously,
this analysis of missing data suggests that there might be a stronger organization
according to dormitory residence (especially for its single-gender subnetworks). The
communities in the Princeton network retain their strong correlation with class year,
but once again the processing of the missing data suggests that there is a stronger cor-
relation with dormitory than asserted above (though one does not see the same large
effect with the single-gender networks in this case). The effect of major also seems to
be somewhat smaller here, and the effect of common high school now appears to be
somewhat positive. We similarly again see the strong correlations with year and dorm
in the UNC network, but examining the missing field suggests a stronger correlation
with high school than what we observed in Section 5. These additional considerations
of the missing data also indicate that some of the possible gender differences suggested
by Table 5.4 may not be real effects.

7. Discussion and Conclusions. We have shown that the tools of network
science—and of community detection in particular—are demonstrably useful for study-
ing the online social networks of universities and inferring interesting insights about
the prominent driving forces of community development in their corresponding offline
social networks. In particular, we used an eigenvector-based network partitioning al-
gorithm (due to Newman [73]) to detect communities in the Facebook networks of
individual universities. We then investigated measures of comparing network parti-
tions (specifically, the algorithmically-identified communities) with those obtained by
grouping individuals according to self-identified characteristics such as class year, dor-
mitory/House, major, and high school. While numerous pair-counting measures using
different algebraic combinations of terms are available in the literature, we observed
that most of the variability in the resulting values disappears when such similarity
scores are interpreted statistically using z-score values. We found that z-scores provide
an immediate (though not quantitatively perfect) interpretation about the likelihood
that such values might arise at random, indicating significant correlations between
the algorithmically-identified communities and multiple self-identified characteristics.
Additionally, considering the missing data in the Facebook networks strongly rein-
forced the above qualitative conclusions concerning the major organizing principles of
each university’s Facebook network as a whole, while also revealing some likely strong
correlations that the inclusion of the “missing” field in user characteristics seemed to
wash out in the full networks.

Our z-score computations allowed us to go beyond visual examination of commu-
nity structure to make additional interesting insights about the organizational struc-
ture of university Facebook networks and, in principle, of the offline social structures
they imperfectly represent. We found that the organizational structure at Caltech,
which depends very strongly on House affiliation, is starkly different from those of the
other universities we studied. We also observed that Georgetown, Princeton, and UNC
communities are organized predominantly by class year, with secondary effects due to
dormitory residence (UNC and Georgetown) or major (at Princeton, though different
ways of processing missing data indicate dormitory residence as the secondary influ-
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ence there). Oklahoma’s communities showed the strongest positive effect of common
high school, at a level roughly as important as dormitory residence. Different ways of
processing the missing demographic data at UNC also indicated a strong correlation
with high school, but not quite as large as with dormitory. Examining each uni-
versity’s single-gender subnetworks (including only links between individuals of the
same gender) suggested some possible differences between the communities of women
and men, though some of the quantitative details varied with the different means of
treating the missing data.

The above sociological conclusions have multiple facets. First, some of our obser-
vations confirm conventional wisdom or are intuitively clear, providing soft verification
of our analysis via expected results—e.g., that Houses are important at Caltech, class
year is often important at large universities, and that high school plays a larger role
at state universities. Second, the resulting confidence in the methodology lends sup-
port for the other observations, such as the relative importance of dormitory and
high school at Oklahoma or possible differences observed in the gender subnetworks.
Additionally, the heterogeneity of the demographic data inside each community (as
visualized by the differently-colored slices in each community in the pie-chart dendro-
grams), along with the calculated important roles of multiple types of demographics
in the Facebook networks, indicates that no single attribute can entirely explain the
community structure. Otherwise, one would expect the community pies to each be
dominated mostly by one color. While this is not surprising sociologically, it demon-
strates quite poignantly that one should not simply attempt algorithmically to find
a single “best” network partition that suffices to explain any sort of unique structure
or organization of a network. (This was also pointed out recently in [20,56].) The
observed community heterogeneity also hints that the real structure of the Facebook
networks might involve important factors beyond those encoded in the links them-
selves. While such complexity in interpersonal relationships is of course expected,
declared links are the only information used in the available community-detection
algorithms because of constraints in the available data. Nevertheless, as we illustrate
using the Facebook examples, it is important to highlight that new methods need to
be developed for situations in which more data can be incorporated.

In the future, it would be extremely interesting to systematically investigate sim-
ilar observed features of Facebook networks by extending this investigation to other
universities, as such a wide comparative study might allow for increased understand-
ing about the factors that drive their social organization. To conduct such an inves-
tigation, it would also be desirable to incorporate data for additional demographic
characteristics (such as fraternity/sorority affiliation, ethnicity, and religion) that one
would expect to lead to the formation of cohesive communities. It might also be inter-
esting to investigate whether the newest students on campus organize differently than
their older peers; for instance, one might hypothesize that first-year student com-
munities would more highly correlate with dormitory residence. The present paper
attempts to provide foundational steps for such a desired comparative investigation
in order to construct and demonstrate a meaningful methodology.

We hope that the present study is instructive not only in outlining the concepts
of community detection, but also in demonstrating the use of statistically-interpreted
pair-counting similarity scores. The latter contributions include the presentation of
an easy-to-implement analytical formula for the z-score of the Rand index in the
Appendix. We also demonstrated the use of permutation tests for indices for which
such a simple formula appears to be unknown.
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Numerous interesting open questions remain. Research on community detection
has thus far focused on the development of methods for structural community detec-
tion. Although structural communities, constructed using only link topologies and
weights, have been shown to correspond closely to functional communities in some
situations [21, 28], such correspondence is in general only approximate. To better de-
termine the desired functional groups of networks, one should in principle explicitly
incorporate appropriate system knowledge directly into graph-partitioning algorithms,
but it is not typically clear how to do so. This is related to a simple, very important,
and underdeveloped idea that we have attempted to explore in the present paper: How
does one examine the features of network communities after they have been obtained
and (ultimately) what does one do with this information? Our goal in this paper has
been to use example networks that are familiar from everyday experience to present
one manner in which one can investigate the features of algorithmically-constructed
communities. To do this, we primarily employed pair-counting similarity scores and an
associated statistical interpretation. Although we found that z-scores virtually elim-
inated the quantitative differences between different pair-counting similarity scores
for a given institution-characteristic combination, the comparison with the statistics
of other correlative measures (specifically, with variation of information) holds only
qualitatively. Moreover, while the tendency for z-scores to increase with network size
is intuitively clear, this trend obscures the ability to make quantitative comparisons
between different institutions. Simultaneously, the typically positive and sometimes
extremely large values of the z-scores we observed in comparing partitions point to
unsurprisingly complex dependencies of the community structures of the online social
networks on multiple characteristics of the individuals involved.

The continuing study and refinement of community-detection techniques have
the potential to make a significant impact not only scientifically but also in everyday
life. For example, alumni associations from several universities can exploit network
structures to improve the services that they offer [60,107]. Indeed, one of the po-
tentially very useful practical applications of community detection is to suggest the
actual groups of individuals who should be invited to events, solicited for funding,
etc., as one would expect these groups to be determined approximately but not ex-
actly by known demographic labels such as dorm/House affiliation. More generally,
community detection might be used to make intelligent predictions about unknown
or withheld demographic information. As discussed in a recent paper by Clauset,
et al. [20], the tools of community detection can also be used to infer missing edges
(and hence missing social ties). Finally, because of the established and accelerating
importance and prominence of community detection, we hope that the present paper
offers not only an analysis of a fascinating example but also provides an opening for
other mathematical scientists to make contributions to this field.
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Appendix A. Statistics of Pair-Counting Indices. The starting point for
pair-counting comparisons between partitions is with contingency table entries n;;,
which denote the number of nodes assigned to group ¢ in the first partition and to
group j in the second partition. Contingency table entries can be used to calculate the
number of node pairs that are assigned to the same group in both partitions (wi1), to
different groups in both partitions (woo), to the same groups in the first but different
ones in the second (wip), and to different groups in the first partition but the same
one in the second (wp1). One can then specify pair-counting indices in terms of these
quantities. For example, the Rand index is given by Sgr = (w11 + woo)/M, where
M = w1 + wig + wor + woeo = (g) is the total number of pairs.

In the present paper, we have emphasized the utility of interpreting pair-counting
similarity coefficients in terms of their values relative to an ensemble of random par-
titions (e.g., as might be obtained by permuting the original assignments). As long
as the randomly-selected partitions are constrained to have the same numbers and
sizes of groups as the original partitions—i.e., as long as the row and column sums,
n;. = > ;ny and n.j = >, n;j, and total number of elements n = 3. n;; remain
constant—then the total number of pairs M = (g), the number of pairs classified the
same way in the first partition, M; = ), ("21), and the analogous quantity for the
second partition, My = ", ("Q‘j ), likewise remain constant. These constraints then
imply, regardless of the detailed method of random generation, that any pair-counting
index specified as a function of the w,g counts can be equivalently specified by the
single variable w = w1 = Zij (”27) because w19y = M7 — w, wgr = My — w, and
wog = M — M7 — My + w. It follows immediately that the Fowlkes-Mallows, I'; Rand,
and Adjusted Rand coefficients are each linear functions of w:

Sem = w// M Mo,

Sp = (Mw — My Ms)//MiMa(M — My)(M — My),

1
SRZ—(M+M—M1—M2),

M
M7 M- 1 M7 M-
SAR = (fl— ]1\42)/<§(M1+M2)—%) .

These seemingly different indices are hence also each linear functions of each other [48].
Other indices (not used in the present paper) that can also be expressed as linear
functions of w include Wallace’s two asymmetric indices [100], the T coefficient in [46],
and the agreement measure suggested in [11].

Numerous studies have attempted to assess the utility of various similarity mea-
sures in their raw forms, but we find it most useful to return to a classical statistical
approach, advocated in [11,29] (and presumably also by others), wherein such mea-
sures are used in the context of testing significance levels of the obtained values versus
those expected at random. One then needs to select a specific null model (and deal
with the limitations inherent therein [68,100]), regardless of whether one wishes to
quantify the randomness analytically or computationally. If the null model is an inde-
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pendent random model, then the resulting significance-level test to reject the hypoth-
esis of independence must be interpreted correctly: A result that is less likely under
the independent hypothesis need not be more likely in the alternative scenario [39].
In the present context, this implies that a stronger rejection of independence does not
allow one to conclude that two partitions are “closer” in all senses. Indeed, we would
recommend using a proper distance metric such as variation of information (VI) [64]
for comparing partitions that are close to one another. In contrast, in most of our
Facebook examples the mutual information of a pair of partitions is small compared
to the total information in each. In such cases, two partitions can be relatively far
from each other according to a distance measure but might nevertheless be very far
in the tail of the distribution of what can be expected at random.

Any similarity index S; that is a linear function of the single variable w must be
statistically equivalent in any null model that generates ensembles of partition pairs
in which M, M7, and M, are constrained to remain constant. Specifically, because
the domains of each of the S; are linear transformations of the domain of w (and
of each other), the z-score and p-value associated with a specified w (for given M,
My, and M>) must be the same for every similarity index that depends linearly on
w. In deference to the seminal presentation of the Rand index [86], we refer to the
resulting z-score as zg, although it is equivalent by linearity to the z-score advocated
explicitly by Brennan and Light [11], with zr = (w — pw)/0w, where p,, and oy,
are the mean and standard deviation, respectively, of w = wy; = Zij ("2J ) In the
absence of another compelling null model, we adopt the fully random hypergeometric
distribution with fixed row and column sum marginals. The expected value then
becomes p.,, = M1 Ms/M, as for the adjusted Rand index [47]. The calculation of
higher-order moments is more involved [11,12,46, 63].

In order to make the Rand index z-score zr as simple as possible to calculate, we
concisely present the formulas of [46] in a slightly simplified (to our eyes) form using
the present notation:

1 M M.
ZR:E (w— ]1\4 2) 5 (Al)
where
b2 — % _ (4M, — 2M)2(4M2 — 2M)2 CCy
w16 256.M2 16n(n —1)(n —2)

[(4M — 2M)% — 4Cy — AM[(AMy — 2M)? — 4C, — 4M]

+ 6dn(n —1)(n—2)(n—3) ’

(A.2)
with C; and C5 obtained from third powers of the row and column sum marginals,

Ci=n(n’—3n—2)—8(n+1)M +4» n,
Cy=n(n®—3n—2)—8n+1)My+4» n?, (A.3)

J

and M, My, M3, n, n;., and n.; are as defined above.

While we advocate the use of zr, we caution that the significance levels (equiva-
lently, the p-values of the cumulative distribution) associated with them are not equal
to those for a Gaussian distribution. The distribution for large samples is asymp-
totically Gaussian [53], but the distribution associated with comparing a particular
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pair of partitions need not be so. Indeed, as shown in [12], the tails of the distri-
bution can be quite heavy, so that the probability of obtaining extreme z-scores can
be orders-of-magnitude higher than that given by the normal distribution. Neverthe-
less, the Gaussian approximation is reasonable up to at least two standard deviations
(i.e., past the 95% confidence interval) for all but the most extreme cases (see, e.g.,
Fig. 4.1). Given the straightforward calculation of (A.1)—(A.3), we prefer to use zr
directly, with the caveat that the Rand indices do not translate directly to p-values.

Even without ever calculating the p-values themselves, it is instructive to note
the similarity of the linear-in-w similarity coefficients to the Jaccard and Minkowski
indices, which are not linear in w:

My + My — 2w 1 _M1+M2

— = —1.
M1 ’ SJ w

S =
The asymmetry in the Minkowski index is clearly limited; switching which partition
is the reference changes the coefficient by a multiplicative factor. Finally, because the
square root and multiplicative inverse are both monotonic operations in the domains
of these indices (Sv > 0, 0 < Sy < 1), it follows that the p-values of the cumulative
distributions of each are identical to the p-value of w itself even though the z-scores
can be different from zr. Therefore, every one of the pair-counting indices considered
in the present paper are actually identical to each other for the purpose of testing the
significance levels of the (null) independent hypothesis. Consequently, even though
we do not ever directly calculate the corresponding p-values, the associated zg-scores
of the linear-in-w indices provide an easy measure with which to order the strength
of rejection of the null hypothesis.
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